Multistep ε–algorithm and Shanks’ transformation by Hirota’s method

نویسنده

  • C. Brezinski
چکیده

In this paper, we propose a multistep extension of the Shanks’ sequence transformation [2, 3]. It is defined as a ratio of determinants. Then, we show that this transformation can be recursively implemented by a multistep extension of the ε–algorithm of Wynn [4]. Some of their properties are specified. These results are obtained by using the Hirota’s bilinear method [1], a procedure quite useful in the solution of nonlinear partial differential and difference equations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Extended Multistep Shanks Transformation and Convergence Acceleration Algorithm with Their Convergence and Stability Analysis

The molecule solution of an extended discrete Lotka-Volterra equation is constructed, from which a new sequence transformation is proposed. A convergence acceleration algorithm for implementing this sequence transformation is found. It is proved that our new sequence transformation accelerates some kinds of linear sequences and factorial sequences with good numerical stability. Some numerical e...

متن کامل

Application of the Schwarz-Christoffel Transformation in Solving Two-Dimensional Turbulent Flows in Complex Geometries

In this paper, two-dimensional turbulent flows in different and complex geometries are simulated by using an accurate grid generation method. In order to analyze the fluid flow, numerical solution of the continuity and Navier-Stokes equations are solved using CFD techniques. Considering the complexity of the physical geometry, conformal mapping is used to generate an orthogonal grid by means of...

متن کامل

Is the fast Hankel transform faster than quadrature?

The fast Hankel transform (FHT) implemented with digital filters has been the algorithm of choice in EM geophysics for a few decades. However, other disciplines have predominantly relied on methods that break up the Hankel transform integral into a sum of partial integrals that are each evaluated with quadrature. The convergence of the partial sums is then accelerated through a nonlinear sequen...

متن کامل

Solving a New Multi-objective Inventory-Routing Problem by a Non-dominated Sorting Genetic Algorithm

This paper considers a multi-period, multi-product inventory-routing problem in a two-level supply chain consisting of a distributor and a set of customers. This problem is modeled with the aim of minimizing bi-objectives, namely the total system cost (including startup, distribution and maintenance costs) and risk-based transportation. Products are delivered to customers by some heterogeneous ...

متن کامل

A new two-step Obrechkoff method with vanished phase-lag and some of its derivatives for the numerical solution of radial Schrodinger equation and related IVPs with oscillating solutions

A new two-step implicit linear Obrechkoff twelfth algebraic order method with vanished phase-lag and its first, second, third and fourth derivatives is constructed in this paper. The purpose of this paper is to develop an efficient algorithm for the approximate solution of the one-dimensional radial Schrodinger equation and related problems. This algorithm belongs in the category of the multist...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011